在深度学习的所有应用场景中,股价预测也无疑是其中一个异常诱人的场景。随着传统线性模型的潜力逐渐枯竭,非线性模型逐渐成为量化交易的主要探索方向,深度学习对非线性关系良好的拟合能力让其在量化交易中面临着广阔的应用前景。但与常规的回归预测任务不同的是,股价预测问题有其独特性,存在时间序列、噪声高、过拟合等问题。当前对于深度学习在股票交易中的研究主要侧重在因子挖掘、图神经网络与知识图谱、新闻与社交媒体等非结构化数据的利用、以及时序模型改进四个方面。我们会在文章中依次探讨近5年顶会上对这四个方向的研究。
本文主要介绍MSRA在KDD 2019上发表的两篇文章,这两篇文章主要关注深度学习在
更新时间:2024-12-05 06:16
本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在量化投资中应用的具体方法解析
AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅
更新时间:2024-12-05 02:26
你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!
这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。
本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。
机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene
更新时间:2024-12-04 08:53
V1.0和V3.0的keras是什么版本的
我无法复现V1.0的CNN策略, 请问V1.0和V3.0的keras是什么版本的. V1.0和V3.0的深度学习模块的默认的学习率是多少
更新时间:2024-11-29 02:00
一个深度学习时序数据划分的问题
整体的数据集依然采用滚动训练的方法划分不同时间的训练和测试数据,接下来提到的时序数据窗口划分会对每一个滚动训练的数据进行。
1、在深度学习的时间序列中一般采用时间窗口的方式抓取数据,比如15天的数据预测下一天的标签。我现在有的一个问题是,我的数据集是每一支股票按照时间序列进行排序的,比如是2020-2022年的stock_1的数据然后接下来是2020-2022年的stock_2的数据····。对于训练数据的时间窗口的抓取是进行了shuffle的,随机确定时间的起始值。这种情况下,有可能会抓取到不同的两只股票的数据,而且这个数据是在时序上不连续的(比如
更新时间:2024-10-21 02:13
MeetUP直播答疑 时间:7月25日(周四)19:00 回放视频请访问宽客学院-双周答疑-78thMeetup
\
量化入门及平台使用:[谁都可以学的量化基础【直播】](https://bigquant.com/college/courses/course-v1:plus+training00+2024-06-19/courseware/d70de3d2c4794547ad3b4eadb5058
更新时间:2024-07-30 02:00
通过上次在Cifar10上复现ResNet的结果,我们得到了上表,最后一栏是论文中的结果,可以看到已经最好的初始化方法(MSRA)已经和论文中的结果非常接近了!今天我们完全按照论文中的实验环境,复现一下ResNet论文中的结果。
上次的论文复现主要和原文中有两点不同:
Cifar10中的图像都是32X32的,论文中对测试集中的每张图
更新时间:2024-07-10 09:23
最近处于读论文的状态,给大家分享一些导读(一段话的论文总结),持续更新。
论文地址我就不贴了,Google一下就find得到。
主要论文涉及深度学习、计算机视觉(包括但不限于物体检测、图像分割)、模型设计及优化方面。欢迎评论区随时讨论papers,共同进步。
这篇文章考虑特征通道之间的关系,显著地建模特征通道之间的相互依赖关系,但又不引入新的空间维度来
更新时间:2024-06-12 06:16
年初就一直在等啦
终于等到这本书
分享一下
此书的代码下载地址:https://github.com/fchollet/deep-learning-with-python-notebooks
![](/community/uploads/default/original/3X/c/c/cc94b84a373c66d820177c480765c8ec2467c73d
更新时间:2024-06-12 06:16
今天小编为大家带来近期出版的一些关于机器学习、深度学习、数据科学方面的书籍。希望大家有所收获!
我们已经打包好了!
可在文末下载
![](/community/uploads/default/origin
更新时间:2024-06-12 06:16
物体检测,是计算机视觉任务的基础,其精度将直接影响相关视觉任务的效果,在深度学习方法兴起之前,开展了很多利用场景上下文来提高检测精度的研究。近年来,随着Faster RCNN等深度学习方法的兴起,在日益强调数据和性能的背景下,对上下文关联信息的利用却鲜有尝试。本文将介绍一种结构推理网络(Structure Inference Net,简称SIN),将物体检测问题形式化为图结构推理,采用图结构同时建模物体细节特征、场景上下文、以及物体之间关系,采用门控循环单元(GRU)的消息传递机制对图像中物体的类别和位置进行联合推理。在基准数据集PASCAL VOC和MS COCO上的实验,验证了方法在精度提
更新时间:2024-06-12 06:15
回顾去年的DCNN成果和深度学习发展,就必然会提及到到Kaiming He的深度残差网络 (https://arxiv.org/abs/1512.03385)。这不仅是因为ResNet一举拿到了CV下多个比赛项目的冠军,更重要的是这一结构解决了训练极深网络时的degradation问题。作为我来到MSRA第一个月重点学习的论文,现在在这里分享一下我这大半个月以来的学习成果。
He首先提出一个问题:*Is learning bett
更新时间:2024-06-12 06:13
\
更新时间:2024-06-12 06:06
好嘛博主食言了。不过本文没什么干货,主要是前后看了大概一个星期,反复去读源码和解读文章,终于感觉这东西不那么云山雾罩了。同时也发现网上很多材料有点扯淡,99% 的博文不过是把别人的东西用自己的话说一下,人云亦云。好多人自己理解错了而不自知,实在是误人误己。
我也不敢说理解得有多深,下面的内容甚至可能有自相矛盾的地方,所以阅读本文时请一定擦亮眼睛,认真思考。
源码才是根本,作者那两篇论文感觉参考价值也不高。说到底,Machine Learning/Deep Learning 的价值在于实践,而实际开发的应用中经过大量的 tricks 之后,代码跟论文推导、实验可能相去甚远。
Data Mi
更新时间:2024-06-12 06:06
通过对代价函数求权重的梯度,我们可以一次性对所有的参数 进行优化,但是如果每次等全部计算完成再优化升级,我们将等待很长时间(对于很大的语料库来说)。
所以我们采用随机梯度下降( Stochastic Gradient Descent),也就是说每次完成一次计算就进行升级。
但是,还有两个问题导致目前的模型效率低下!
第一个问题,我们每次只对窗口
更新时间:2024-06-12 06:06
推荐一本2018年初发布的,由佐治亚理工学院交互计算学院副教授Jacob Eisenstein编写的深度学习与自然语言处理的教材。这本书由浅入深,在详细、全面介绍了自然语言处理相关的基础知识之上,结合了最新的深度学习技术,详细介绍了深度学习技术在自然语言处理很多方面的应用。文末附本书pdf下载地址。
主要内容
LEARNING
Linear text classification
Nonlinear Classification
Linguistic Application of Classification
Learning without Supervi
更新时间:2024-06-12 06:06
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-12 06:00
2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me
更新时间:2024-06-07 10:55
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/c13d6baefe5d4c75bb87eea9364b0f75
\
更新时间:2024-06-07 10:55
有没有深度学习排序选股的模板可供使用。
https://www.bilibili.com/video/BV1hg411X71b?share_source=copy_web
https://bigquant.com/wiki/doc/zhouqi-yinzi-xilie-AXKpErKDII#h-reference
以TabNet在量化选股中的应用为例
[https://bigquant.com/exp
更新时间:2024-06-07 10:55
transformer等深度学习中序列窗口滚动模块具体的功能是什么,为什么要把数据做这个处理,能否用numpy的源码写一个函数?
https://www.bilibili.com/video/BV1i44y1q7As?p=4&share_source=copy_web
2021年7月8日Meetup策略模板:
[https://bigquant.com/experimentshare/6235b7c
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
BigQuant宽客学院伴随着平台的更新,学习和探讨的内容也日益增加。大家对机器学习、深度学习的策略研究越来越深入,新的想法也层出不穷,为了满足大家对探索的渴望,因此我们准备了定期的“BigQuant AI量化专家MeetUp”,本周四正式启动了!BigQuant学院院长、AI量化专家现身BigQuant B站直播间,在线交流、答疑,解决您在AI量化和BigQuant遇到的所有问题!
以导师答疑为主,解决大家在日常开发中遇到的问题:
更新时间:2024-06-07 10:55
深度学习模型对true, false这类数据应该做什么样的预处理,对出现inf的数据该做什么处理?深度学习对股票数据以及labe一般该做什么样的预处理,顺序如何?
https://www.bilibili.com/video/BV1i44y1q7As?p=2&share_source=copy_web
\
inf的去除即可
去极值、标准化、中性化 、分桶
\
更新时间:2024-06-07 10:55