机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

机器学习:18-滚动训练-线性回归

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

https://bigquant.com/codeshare/66c560a3-335b-407c-aa2f-7053322141f4

\

更新时间:2024-04-25 07:41

机器学习:17-LSTM

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/56e64ce1-43c8-4317-90d4-5df0a427a966](https://bigquant.com/codeshare/56e64ce1-43c8-4317-90d4-5df0

更新时间:2024-04-25 07:41

机器学习:16-CNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

https://bigquant.com/codeshare/ccbddd56-eddd-4a7f-95e2-88e8a0432a3d

\

更新时间:2024-04-25 07:40

机器学习:15-DNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/fd48a0d6-918f-4001-9a84-bcea18ae174b](https://bigquant.com/codeshare/fd48a0d6-918f-4001-9a84-bc

更新时间:2024-04-25 07:40

机器学习:14-XGBoost

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:



\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/f753d0b8-a3b2-4781-a1a9-dbf6ffe3fe38](https://bigquant.com/codeshare/f753d0b8-a3b2-4781-a1a

更新时间:2024-04-25 07:40

机器学习:12-随机森林

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:


{{membership}}

[https://bigquant.com/codeshare/ccd34b84-4b39-4c48-b082-3859335a6c20](https://bigquant.com/codeshare/ccd34b84-4b39-4c48-b082-

更新时间:2024-04-25 07:40

机器学习:11-感知机

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==

回测图:

\

策略源码:


{{membership}}

[https://bigquant.com/codeshare/d6fc0818-ae1c-4408-a0af-4cd73ffddfd6](https://bigquant.com/codeshare/d6fc0818-ae1c-4408-a0af-4c

更新时间:2024-04-25 07:40

机器学习:10-朴素贝叶斯

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/86ef92ba-f91f-46fa-a6d3-d7b2207e741b](https://bigquant.com/codeshare/86ef92ba-f91f-46fa-a6d3-d7

更新时间:2024-04-25 07:40

机器学习:9-KNN

  • 运行环境:AIStudio 3.0

  • 机器学习:KNN算法

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/4fbd0eb2-8eec-4d43-b9bb-5aa4596d847a](https://bigquant.com/codeshare/4fbd0eb2-8e

更新时间:2024-04-25 07:40

机器学习:6-索套回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:索套回归
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/7e2cc9bf-0dea-4201-8b94-ad465750eec8](https://bigquant.com/codeshare/7e2cc9bf-0de

更新时间:2024-04-25 07:40

机器学习:5-岭回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:岭回归策略
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/af49fa20-ce4a-4f8f-b88c-d413035fe309](https://bigquant.com/codeshare/af49fa20-ce4a

更新时间:2024-04-25 07:40

机器学习:4-线性回归构建因子

  • 运行环境:AIStudio 3.0.0
  • 线性回归:构建因子+单因子策略回测
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/cd8638d7-21c0-4df4-8a29-e9f1cc227df0](https://bigquant.com/codeshare/cd8638

更新时间:2024-04-25 07:38

机器学习:3-逻辑回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:逻辑回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/b2a658f9-e445-422b-95f9-b57a50e23562](https://bigquant.com/codeshare/b2a65

更新时间:2024-04-25 07:38

机器学习:2-线性回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:线性回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/3c3165db-d37e-4c8a-90f6-8af10855fb18](https://bigquant.com/codeshare/3c3

更新时间:2024-04-25 07:38

量化机器学习系列分享(六)无监督学习常见算法

1. 无监督学习之聚类算法

1.1 聚类方法简介

聚类算法是一种无监督学习算法,它和监督学习任务下的分类算法是有明显对比的

  • 监督学习的分类算法:数据属于哪一个类别是有标签定义的,模型有没有分类正确我们也是可以明显评判出来的
  • 无监督学习的聚类算法:数据没有明确的标签表明类别,聚类的正确与否、好与坏,都是很难评价的

聚类算法的目的,是将数据集中的数据,划分为不同的类别,但是这个类别没有标签去衡量

  • 目的可能是为了人为地将数据按照特征归类,比方说数据集中的个体,我想按照身高和体重,分出胖和瘦的区别来
  • 目的可能是为了探寻数据背后的隐藏标签,比方说数据集中的个体,我在采

更新时间:2024-01-10 11:34

量化机器学习系列分享(三)逻辑回归与优化方法

1. 逻辑回归

1.1 分类问题的定义

分类问题的标签是离散型的变量,我们的目的是用特征,来预测标签归属于几个类别当中的某一种

  • 如果是预测标签属于两个类别当中的哪一种,就叫二分类问题,比方说预测股票明天是涨,还是不涨,两个类别
  • 如果是预测标签属于多个类别当中的哪一种,就叫多分类问题,比方说预测股票明天是涨,还是跌,还是不涨不跌,还是涨停,还是跌停,五个类别

本次分享我们主要讨论二分类问题

对于二分类问题,我们需要把定性的类别,转换为定量的数字,来让计算机理解类别的概念

  • 一种做法是将一个分类定义为1,另一个分类定义为0,比方说预测股票明天是涨,还

更新时间:2024-01-10 03:19

量化机器学习系列分享(二)模型评估与特征选择

1. 模型评估

1.1 偏差与方差

上次分享我们提到过,模型的好坏评价标准,是模型在测试集上的预测是否准确,好比一个学生在期末考试当中拿高分才是学的好

模型在测试集上的预测误差(Error),可以分为三种来源

  • 偏差(Bias):高偏差的模型表现为:

    对于一个预测样本,不仅预测不准,而且如果模型再训练一遍,还是同样地预测不准

    好比我们期待一个同学期末考90分,但是他只考了50分,如果再给他一次机会,重学一遍再参加考试,他还是考了50分,距离90分一直很远

  • 方差(Variance):高方差的模型表现为:

    对于一个预测样本,

更新时间:2024-01-10 03:19

量化机器学习系列分享(四)更多种类的分类模型

我们今天分享的四种模型,包括上次分享的逻辑回归,都是一些轻量级的分类模型,适用于数据量少,特征量少的分类任务

\

1. 支持向量机(SVM)

1.1 SVM的概念

支持向量机(Support Vector Machine)是在神经网络流行之前最强大的机器学习算法

SVM在二分类问题上的逻辑原理是:

  • 假设我们的样本中有两个类别,我们可以把样本画到图上
  • 如果切一刀下去,怎样切可以尽可能地把两个类别尽可能地分开

比方说以下图像中

![](/wiki/api/attachments.redirect?id=620959a3-ac1c-4a55-ab93-cd1

更新时间:2024-01-10 03:19

量化机器学习系列分享(五)树模型与组合模型

nan1. 决策树模型

1.1 决策树模型的概念

决策树是机器学习中的一个典型的非参数模型,它使用规则,而不是参数,来定义模型

  • 这种决策方式其实是和人类最直接的思考方式是类似的
  • 例如,我们使用身高这一特征,去预测性别这一标签的时候,一个比较直觉的方式是,如果身高大于 175 就分类为男生,如果身高小于 175 就分类为女生

以下是一个典型的决策树模型:使用三个特征:X1,X2,X3;预测一个标签 Y

  • 图中的圆圈和

更新时间:2024-01-09 11:51

dai+optuna+vectorbt编写CTA策略并调参

https://bigquant.com/codeshare/0ffb5755-3b0a-4e5f-95d8-4d37e9d5fac0


https://bigquant.com/codeshare/77aeff8a-3028-44b5-93ec-68867a08466d

\

更新时间:2023-11-13 02:45

开源金工|看看顶级量化私募择时选股能力

222

更新时间:2023-07-21 03:16

BigQuant 最佳实践

  • BigQuant使用案例
  • 最佳使用方式

\

更新时间:2023-06-29 06:56

华西证券机器学习择时系列之三:LSTM模型市场择时策略 2021/09/09

摘要

量化择时交易策略

机器学习量化交易策略的制定,是通过从海量历史数据中,利用计算机强大的处理能力,挖掘并分析出那些能够为投资者带来收益的各种大概率可行的投资方式来实现的。通过数学模型对这些策略进行分析并加以验证,以期望让投资者获得更高更稳定的收益,或更合理地规避风险。

长短期记忆模型具有明显优势

长短期记忆模型通过记忆单元有效地学习长期依赖关系,在金融市场预测中具有明显优势长短期记忆网络是人工神经网络的一种,具有负责计算时间序列中各个观测值之间依赖性的能力,同时具有快速适应趋势中急剧变化的固有能力。所以,长短期记忆模型可以在波动的时间序列中很好地工作。在处理股

更新时间:2023-06-13 06:53

基于条件随机场的周频择时策略 广发证券_20180403

摘要

报告摘要:条件随机场模型及股市择时思路自1988年,西蒙斯成立了大奖章基金并在多次股灾中取得稳定的收益后,纯技术量化型的投资策略开始受到投资者的广泛关注,而机器学习正是这种技术量化型策略的中坚力量。目前使用较为成熟的模型之一是隐马尔可夫模型HMM,其与条件随机场是一对“生成判别对”。相比起HMM,条件随机场具有更加灵活等优点。事实上,条件随机场(Conditional Random Field,CRF)是描述给定一组输入随机变量条件下另一组输出变量的条件概率分布的模型。基于条件随机场,我们可以建立观测指标值和走势状态及走势状态与走势状态之间复杂的函数依赖关系,从而,当给定新的观测

更新时间:2023-06-13 06:53

Table_Title 机器学习多因子动态调仓策略 广发证券_20180426

摘要

传统因子表现不佳,因子择时大显身手在历史上表现良好的规模、反转和流动性因子在17年以来都出现了明显的回撤,导致主流多因子选股策略表现欠佳。在这样的大背景下,如何把握Alpha因子的风格轮动,选择最有效的风格因子,成为重要的研究课题。

基于机器学习的因子择时框架本报告选择常见的7个风格因子,通过机器学习方法,基于历史数据提炼因子风格轮动的规律,将因子IC历史信息、宏观经济变量、市场变量等信息作为特征,采用性能优良的XGBoost模型对因子未来的IC进行预测,来衡量不同风格因子未来选股的有效性。在因子配权时,赋予预期表现好的因子更高的权重,而减小预期表现不佳的因子的权重。

更新时间:2023-06-13 06:53

分页第1页第2页第3页第4页第5页第14页
{link}