基金
策略思想
1. 策略思路
该策略基于ETF基金的拥挤度因子来评估未来一段时间的涨幅概率。通过定期轮动,构建多头组合,以获取超越基准的超额收益。拥挤度因子用于衡量市场中某些基金的过度买入或卖出情况,从而预测其价格的反转或持续趋势。策略通过定期(如每22个交易日)评估市场中各ETF的拥挤度,将资金配置至预计涨幅较大的ETF中。
2. 策略介绍
拥挤度因子是一个用于衡量市场中某一资产过度买入或卖入程度的指标。通常,在市场上某一资产被过度买入时,可能会导致该资产价格上涨过快,而在过度卖出时,可能...
策略思想
1. 策略思想
本策略通过筛选经营利润和净利润增长率较高的股票,使用动量因子和反转因子进行特征提取,并结合StockRanker算法进行评分和排序。筛选出前10名的股票进行持有,且按日频调仓。
2. 策略介绍
本策略旨在通过综合考虑股票的基本面和技术面因素,选择出整体表现优秀的股票进行投资。具体而言,首先根据股票的经营利润增长率和净利润增长率,对股票进行初步筛选。然后,使用动量因子和反转因子作为特征,通过StockRanker算法对这些股票进行评分和排序,选出得分最高的前10名股票进行投资。...
策略思想
1. 策略思路
该策略主要通过对股票市场的历史数据进行量化分析,寻找出具有特定特征的股票,以实现投资收益的最大化。策略通过计算一系列的条件(con1 到 con30)来筛选股票,这些条件通过对股票的价格、成交量等数据进行加工和计算得出。然后,策略根据这些条件生成一组符合要求的股票清单,并在交易时段内动态调整持股组合。
2. 策略介绍
该策略运用了一种基于因子的量化选股方法。通过对股票市场的历史数据进行分析,定义了多个特征因子(如con1到con30),这些因子涵盖了市场状态、行业表现、个股...
策略思想
1. 策略思想
- 本策略是一种典型的量化选股和仓位控制方法。其核心思想是根据预设的预测因子,对股票池中的股票进行排序,选择前 N 只股票进行配置,并根据每日预测数据动态调整仓位。策略设定每只股票的持仓权重,并规定单只股票的最大资金占比。
2. 策略介绍
- 该策略的理论基础在于相信股票的未来表现可以通过一定的因子或指标进行预测。通过量化因子(如 position、date、instrument 等)的计算,对股票进行打分,并选择得分最高的股票进行投资。同时,通过仓位控制和资金管理,实现对风险的有效管理。...
策略思想
1. 策略思想
- 该策略是基于市净率(P/B)和市盈率(P/E)合成指标筛选股票池,最终使用量价因子作为特征训练stockranker算法,并持有排名前10的股票,每日进行调仓。
2. 策略介绍
- 此策略通过结合市净率和市盈率两个重要的估值指标,构建一个复合筛选条件。市净率(P/B)是市值与每股净资产的比值,可以反映公司净资产的市场估值情况;市盈率(P/E)是市值与每股收益的比值,可以反映公司盈利能力的市场估值情况。
- 接下来,策略进一步使用量价因子,指的是与成交量和价格相关的技术指标,比如成交量加...
策略思想
策略思想
核心资产优选策略基于价格比率、成交量动态、资金流向和市场表现等多种因子,通过训练StockRanker模型,从而选择排名前十的股票进行日频调仓。这一策略旨在通过综合多个因子对股票进行系统性评分,以期望发现具有良好潜力的核心资产,从而实现稳健的收益。
策略介绍
这一策略主要依靠以下几个因子进行综合分析:
1. 价格比率:价格比率是指股票价格与其他财务指标的比率,如市盈率(PE)、市净率(PB)等。通过这些比率,可以了解到公司估值水平的合理性。
2. 成交量动态:成交量的变化反映了...
策略思想
1. 策略思路
该策略通过分析股票的行业归属、涨停状态、交易量、收益率等多种因子,建立了一套复杂的选股条件(constrs),以筛选出符合条件的股票进行投资。策略通过多个数据表的创建和连接操作,提取和计算出股票的多种因子值,并对这些因子进行分组和排序,以满足特定条件的股票作为买入目标。
2. 策略介绍
该策略使用了多种量化因子进行股票筛选。其中包括:
- 涨停率因子:计算股票在最近若干交易日内的涨停情况。
- 收益率因子:包括单日、两日、十日等多种收益率及其在行业中的排名。
- 成交量...
AI,成长,价值
策略思想
1. 策略思路
本策略通过每日因子评分对股票进行排序,并剔除科创板股票,选取排名前10的股票构建等权重组合。每日换仓数量限制为1,优先卖出不在预测名单中的股票及得分较低的持仓股票,然后根据因子得分补充买入股票,保持组合规模稳定在10只。这种动态调整持仓结构的策略适合追求稳健的中短期股票投资。
2. 策略介绍
综合因子评分选股策略是一种基于量化因子模型的选股策略。因子模型通过对股票的各项指标(如基本面、技术面、市场情绪等)进行打分,并将这些因子分数综合以形成总评分。然后根...
策略思想
1. 策略思想
- 本策略主要利用成交量、价格波动和交易活跃度等因子,训练一个StockRanker算法进行选股。选取预测排名靠前的十只股票进行持有,并采用日频的方式进行调仓。
2. 策略介绍
- 该策略运用了基于量化因子的选股模型,将成交量、价格波动和交易活跃度作为主要特征。通过训练一个StockRanker模型来对股票进行排名,从而选出排名前10的股票进行投资。日频调仓意味着每天都会根据StockRanker模型的最新预测进行一次调仓,以期能够快速响应市场变化。
3. 策略背景
- 成交量、价格波动和交易活跃度都是市场...
策略思想
1. 策略思想
- 本策略主要使用股票的量价相关信息等指标来训练stockranker模型。通过对这些股票指标的综合考量,对股票进行排名,并选择排名靠前的十只股票进行调仓。
2. 策略介绍
- 核心思想:该策略的核心思想是通过股票的量价关系来预测其未来表现。量价关系包含了大量的市场心理和资金流动信息,这些信息可以帮助我们更好地理解股票的趋势和波动。通过使用这些信息进行机器学习模型训练,对股票进行打分和排序,选择表现潜力较高的股票进行投资。
- 量价关系:量价关系是指成交量和成交价格...
策略思想
策略介绍
本策略使用遗传规划技术挖掘出的因子结合stockranker算法进行训练,以选出排名前10的股票进行持有。该策略主要通过日频率进行调仓,以确保持仓按计划持续优化。
策略背景
遗传规划(Genetic Programming,GP)是一种进化算法,用于自动生成程序或表达式。它基于自然选择的理论,通过模拟遗传进化的过程来寻找问题的最优解决方案。在金融领域,遗传规划可以用于挖掘金融市场中的优质因子。stockranker算法是一种基于因子排序的选股方法,结合机器学习手段,对不同因子给予不同权重,以选出最优的股票...
流动性
策略思想
1. 策略思路
该策略的核心思想是通过技术指标(均线、均量线)和股票基本面信息(市值)来筛选和管理股票投资组合。具体步骤如下:
- 筛选出5日均线大于25日均线以及5日均量大于60日均量的股票。
- 过滤掉ST股、停牌股、科创板和北交所股票,并选择股价在2元到100元之间的股票。
- 若选出的股票数量超过10只,则去掉市值最大和最小的,保留剩下的中市值股票进行投资。
- 以10万资金满仓操作,持有10只股票,每只股票投资约1万元。
- 在收盘后选出符合条件的股票,第二天开盘时买入或卖出。
2. 策略介绍
该策...
基金,质量
策略思想
1. 策略思路
该策略名为“多因子动态ETF猎手”,面向20多只指定ETF,通过多因子筛选进行每日调仓。策略中使用了三种因子:
- 趋势评分因子:基于25天的年化收益率乘以R²,衡量ETF的趋势稳定性和收益强度。
- 价格反转因子:利用5日与10日的价格反转特性,捕捉短期价格回调或反转机会。
- 成交量均值比因子:通过5日与18日成交量均值比,评估市场参与度和交易活跃性。
综合以上因子评分,选出得分最高的1只ETF进行全仓配置,每日进行调仓以实现动态投资。
2. 策略介绍
多因子投资策略是一种结合多种不同因子...
策略思想
1. 策略思想
- 该策略基于交易活跃度、长短期回报比、排名变化以及波动性变化,训练StockRanker模型,并选择排名前十的股票进行日频调仓。
2. 策略介绍
- 交易活跃度:通常是指个股的成交量、成交金额等指标,可以反映市场投资者对该股票的关注度和交易意愿。
- 长短期回报比:衡量股票一段时间内的收益表现,可作为股票未来走势的预期指标。
- 排名变化:基于各类指标对股票进行排名,并观察排名的变化情况,这可以帮助我们捕捉到市场情绪的转变和个股的表现差异。
- 波动性变化:波动性常用...
策略思想
1. 策略思路
该策略通过分析多个因子,进行量化选股。策略通过构建一系列复杂的条件约束,利用历史数据中的多种技术指标,筛选出符合条件的股票,并进行投资。策略使用了大数据分析技术,结合股票的行业、日线数据、以及其他市场信息,进行深入的因子分析。
2. 策略介绍
策略的核心思想是通过构建多因子模型来进行股票筛选。策略从数据库中提取股票的日线数据和行业信息,计算出多个因子,如股票的涨停次数、股票的日收益率、行业的平均收益率、成交量等。然后通过一系列的条件(如涨停比例、...
策略思想
1. 策略思路
本策略是一个基于期货市场的高频套利策略,主要通过分钟级别的数据进行交易。它封装了杠杆倍率、开始日期和结束日期,设置了保证金在亏损达到80%和95%时的提醒功能。策略通过每日输出盈亏情况,并根据基差的不同档位逐步建仓,以实现套利机会。
2. 策略介绍
高频交易策略是指通过快速的数据分析和执行,捕捉市场的短期价格波动,从而获取盈利。本策略通过对期货合约的基差进行分析,以设定的档位逐步进行建仓操作,当基差达到一定水平时,通过平仓来锁定利润。策略中使用了杠...
策略思想
1. 策略思路
本策略基于相对强弱指标(RSI)进行交易决策,通过利用RSI的超买(>70)和超卖(<30)信号捕捉价格反转机会。具体策略包括:
- 当14日RSI从超卖区
策略思想
1. 策略思路
该策略基于经典的技术指标——KDJ(随机指标)构建,利用K、D、J三值及其变化率作为主要的选股和交易信号。策略的核心思想是通过捕捉KDJ指标的极端值和剧烈波动,结合多种条件综合判定买卖时机,实现短期内的投资收益最大化。选股逻辑依托于每日计算的KDJ指标及相关RSV、高低价范围等辅助数据,结合前一交易日数据进行趋势判断。交易规则强调“疯狂买入卖出”,在无持仓时,通过显著的指标变化或连续多日未交易触发买入信号;有持仓时,若KDJ回归中值、指标剧烈波动或持仓时间超过3天则卖...
策略思想
1. 策略思路
本策略基于经典技术指标MACD,通过分析12日和26日简单移动平均线(SMA)的差值(即DIFF线)及其9日平滑均线(即DEA线),利用DIFF线与DEA线的交叉信号进行交易决策。具体交易规则如下:
- 当DIFF线由下向上突破DEA线时(即MACD金叉),策略买入开仓。
- 当DIFF线由上向下跌破DEA线时(即MACD死叉),策略卖出平仓。
2. 策略介绍
MACD(Moving Average Convergence Divergence)即移动平均线收敛发散指标,是一种广泛应用于技术分析的交易策略。MACD指标由三个主要部分组成:
- DIFF线(快线):即12日SMA与26日SMA的差值,用...
策略思想
1. 策略思路
该策略采用每日调仓的动态持仓调整机制,基于量化因子模型与外部信号数据表,构建股票组合并实现持仓结构的动态更新。策略在每个交易日开盘前判断是否为调仓日,若是,则卖出当前持仓中不在目标列表内的股票,并按照目标仓位买入新选股票。整体交易频率较高,适合捕捉短中期市场机会。
2. 策略介绍
该策略的核心思想是利用量化因子模型生成每日持仓目标。量化因子模型通过分析一系列量化因子(如动量因子、基本面因子等)来评估股票的投资价值。策略所用的信号选股方法依赖于外部数...