投资策略

投资策略是投资者为实现其投资目标而采取的一系列决策和行动。从金融角度看,有效的投资策略不仅能降低风险,还能最大化回报。它涉及到资产配置,即如何在不同的投资工具(如股票、债券、商品、现金等)之间分配资金;时机选择,即决定何时进入或退出市场;以及证券选择,即挑选具有增长潜力的具体投资标的。成功的投资策略需要综合考虑市场环境、投资者风险承受能力和投资期限等因素,并根据这些因素进行动态调整。通过多元化投资、风险管理以及持续的市场研究和分析,投资者可以制定并执行适合自己的投资策略,从而在复杂多变的金融市场中实现理财目标。

【平台使用】如何实现复杂的因子合成,相关的算子模块和代码分享

像一些复杂的因子合成方法怎么实现呢,有没有相关的算子模块或者代码分享呢

更新时间:2025-02-16 02:19

【平台使用】bigquant上没有股息率因子吗,还是我没找到?

如果没有,烦请添加一下,股息率策略也是一种广泛使用的投资策略。

更新时间:2025-02-16 02:14

【平台使用】如何获取因子看板中的因子数据?

如题,前期的教程,目前好像失效了


{w:100}

更新时间:2025-02-16 02:03

【指标定制】请教个问题

如何构建跨周期数据项,并利用这些数据项构建因子?

平时处理的都是日线数据,但如果需要用日线和上月的月线数据进行一些计算形成一些因子,我应该如何构建?

更新时间:2025-02-16 01:46

【平台使用】听老师课,按照老师做的简单策略,但回测没有结果

https://bigquant.com/aistudio/studios/a29733f8-0f37-11ed-93bb-da75731aa77c/?folder=/home/aiuser/work

更新时间:2025-02-16 01:43

【平台使用】选出的股不能交易

选出的股不能交易,是写错了吗,这个是策略地址,

https://bigquant.com/experimentshare/d1a0a1335e934cb3afbb4770a53640e0

\

更新时间:2025-02-16 01:20

【其他】如何用因子分析模块分析模型的IC值

可以了,要设置延迟建仓天数

更新时间:2025-02-15 15:51

【其他】资产定价和投资真的只需要考虑如何用公司特征来预测股票收益吗?

这一问题看起来非常简单,甚至略显傻瓜,资产定价的核心不就是分析影响资产预期收益的因素,而投资更是基于对收益的预期进行选择以获利。但真的仅仅如此吗?

让我们暂且回到大学一年级的微观经济学课堂。玫瑰花的价格在情人节的白天会非常贵,尤其是晚上六七点,但一旦过了晚上 9 点,价格就会暴跌,甚至低于进货成本。OK,我们当然可以说卖花的小男孩可以提前预测到玫瑰花价格的这一时间规律,从而针对性地制定进货量和销售价格策略,比如,在白天卖高价而在晚上 8 点后迅速降价力求在 9 点前卖完,以避免不必要的损失。但事实上,这一价格路径特征跟玫瑰花本身的特征没多大关系,也并非直接由时间决定,而是由时间背后的需求所决

更新时间:2025-02-15 15:47

【平台使用】有没有关于此模块的用法详细文档

{w:100}

更新时间:2025-02-15 15:34

【平台使用】如何将多策略合在一起?

根据官网《如何对AI量化策略进行管理?三步走》(https://bigquant.com/wiki/doc/celve-FeqcyLgLeU),并参考

【模板案例】(https://bigquant.com/community/t/topic/194074)策略组合

在将两个策略合在一起时报错,请问如何解决?

\


NameError Traceback (most recent call last) <ipython-input-20-6aeba62465a8> in <module> 1 M3 = M.

更新时间:2025-02-15 14:55

【代码报错】二分类模型的评估组件报错

https://bigquant.com/experimentshare/20119409c088405dbb7e14dca685958a

\

更新时间:2025-02-15 14:38

【其他】滚动训练中如何使用交易模块的自定义基准收益功能?

类似范例策略里的

https://bigquant.com/experimentshare/caa75714113347f9a5633ad62b3f71d5

\

更新时间:2025-02-15 14:09

【其他】回测如何设置一次全仓买入一只股票

回测如何设置一次全仓买入一只股票

更新时间:2025-02-15 13:54

【代码报错】报错——底部反转策略

https://bigquant.com/codeshare/2e46587e-19ae-4b91-8bf7-6cb9e7da3f7b

\

更新时间:2025-02-15 13:53

【其他】怎么调用因子

具体怎么调用这些因子

更新时间:2025-02-15 13:38

【平台使用】实盘时候,如何查看 运行log

更新时间:2025-02-15 13:15

【平台使用】模拟实盘偶尔报错

{w:100} {w:100}麻烦工程师小哥看一下

更新时间:2025-02-15 12:38

【平台使用】如何实盘?

查了好久,没有找到实盘的指导,大佬们请指导一下。

更新时间:2025-02-15 12:19

【其他】如何利用量化来选趋势股?一篇文章说清楚

Img 量化不仅是用于选股,还有针对货币,期货,期权,基金都可以做出不同程度的量化,本文讨论其中选股注意的事项。有需要写量化代码编写的可私信或者评论区留言!

本文将继续对量化选股做一个小白的科普,介绍几种初步的量化选股模型,如有错误之处请于评论指出。

我们一般将基金的投资策略分为股票策略、宏观策略、期货策略、复合策略等,其中每个大类下又可细分为多个子策略。但是所有的大类策略基本都存在量化子策略,如果按投资的方法来分,投资策略又可以笼统地分为主观策略与量化策略。

更新时间:2025-02-15 11:19

转债凸性的量化表达(gamma)-天风证券20241224

简介

转债凸性的理论逻辑虽然和衍生品 greek 中的 gamma 类似,但实际操作 思路上更类似于债券的凸性。这主要是因为转债在目前的 A 股市场中的主 流投资策略是持有买入,而非 delta 对冲套利。

基于此,凸性对转债来说是“好属性”:当正股上行,凸性会放大转债 delta 收益;当正股下行,凸性会作为对冲项减少转债跌幅。从这个角度来看, 高凸性转债或有一定超额收益。

我们设计了两种衡量凸性的方案:BS 优化法和截面差分法。

BS 优化法:我们用隐波来替代 BS 公式的正股波动率,这种情况下 BS 公式得到的转债价格和实际转债价格一致,从而得到的BS公式 gamma

更新时间:2025-01-10 10:01

133-可转债双低策略

回测绩效

\

定义

可转债全称为可转换债券,指债券持有人可按照发行时约定的价格将债券转换成公司的普通股票的债券,如果债券持有人不想转换,则可以继续持有债券,直到偿还期满时收取本金和利息,或则在流通市场出售变现。

如果持有人看好发债公司股票增值潜力,则可以行使转换权,按照预定转换价格将债券转换为股票。

关键指标

  • 转换比例(conversion ratio):一债券可转换为普通股的数量。
  • 转换价格(conve

更新时间:2025-01-09 10:24

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在量化投资中应用的具体方法解析

AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅

更新时间:2025-01-09 10:19

量化投资学习方法、量化资料、量化工具

量化投资

量化投资是一种基于数学模型和计算机算法来指导投资决策和交易执行的投资方法,不受主观交易的情绪化影响,严格按照程序执行**。** 量化投资在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。

简单来说,是通过寻找金融数据,例如开盘价、收盘价、最高价、最低价、换手率、估值等等大量的数据,与股票收益之间的关系,建立较为稳定的数学模型,从而指导投资策略。

对AI量化有一定了解的选手可以直接查看量化策略模型,有投资经验但无量化的请从金融量化基础知识开始

更新时间:2025-01-08 11:14

量化投资策略有哪些类型特点及适用人群场景

量化投资策略是利用数学模型和算法来分析市场并做出投资决策的方法。这些策略可以大致分为几个类型,每种类型都有其特点、适用人群和适用场景。以下是一些主要的量化投资策略类型:

  1. 趋势跟踪策略
    • 特点:识别并跟随市场趋势,比如股票或商品的价格走势。
    • 适用人群:适合那些相信市场趋势会持续一段时间的投资者。
    • 适用场景:在市场趋势明显且稳定的情况下效果最佳,如牛市或熊市。
  2. AI量化机器学习策略
    • 特点:利用机器学习算法来分析大量数据并预测市场走势。
    • 适用人群:对人工智能和机器学习

更新时间:2024-12-31 08:59

机器学习在量化投资中的趋势和应用

来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien

机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,人们对其在金融领域的应用也越来越感兴趣。在投资管理中,已被应用于新闻的情绪分析、趋势分析、投资组合优化、风险建模等。那么,机器学习在量化投资中有哪些潜在应用呢?

1.常见的机器学习算法

机器学习算法主要有三种:监督学习、无监督学习和强化学习。监督学习是在已知输入和输出的情况下训练出一个模型,将

更新时间:2024-12-11 08:16

分页第1页第3页第4页第5页第6页第7页第19页
{link}