本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 08:22
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 07:51
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 07:49
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 06:34
为输入数据施加Dropout,将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,用于防止过拟合。
更新时间:2024-05-15 02:10
数据挖掘因子轮动关系有自身的局限性和优越性
数据挖掘探究因子轮动,可以利用模型的优势找到更为精细的关系。由于因子轮动的数据量较小,容易过拟合,且逻辑层面较难给出解释。通过扩充数据量及分类模型的应用,降低信噪比和过拟合程度;通过抽取简单模型窥视变量和因子轮动的逻辑关系。
外生变量和因子有效区间有较大关系
根据市场环境变量和随机森林模型建立的因子择时策略相比于默认因子方向建立的策略,除动量因子外,均有提高。以因子择时为基础建立的多因子等权配置策略年化收益为4.76%,最大回撤1.17%,信息比5.11,Calmar比4.06。从树的结构来看,和因子是否有效最相关
更新时间:2023-06-01 14:28
更新时间:2023-06-01 06:18
所有条件不变的情况下,回测买入股票有问题,回测到1月20日,输出日志内1月21日买入的股票跟回测到21日,回测中实际买入的股票不符,什么原因?
更新时间:2023-06-01 02:13
如题,我将策略的训练数据开始时间从15.1.1-19.1.1改为14.1.1-19.1.1,结果回测收益差距十分巨大,从正的200%多的收益降到负收益,这是什么原因?
如果训练数据开始时间都影响这么大,如何确认策略是有效的?
谢谢
更新时间:2023-06-01 02:13
模拟交易训练集可以选近XX天的滚动数据吗?
可参考下这个帖子https://bigquant.com/community/t/topic/128990 5
更新时间:2023-06-01 02:13
作者:woshisilvio
AI量化的玄学- 第一章
如何更有效率的对抗过拟合? 对抗随机性?---
答案:给你个表情自己体会。
https://bigquant.com/wiki/doc/gaishuai-VEmyCgB5uz

笔者一直疑惑的一点就是 我们的模型每天这样选股,赚钱的效应究竟是随机的,还是可控?
模型有没有真正的学到市场中的规律,挖掘到了alpha? 靠AI模型 来赚钱 究竟靠不靠谱?
对于这些问题,一千位quant就有1000个答案,这里就留给评论区的高人们解惑了。
针对以上问题,之前笔者有分享
更新时间:2022-09-21 07:35
首先祝大家五一快乐。
趁着假期没事,虫哥给大家唠嗑唠嗑实盘中踩的那些坑。
4月不易,且行且珍惜,跑的最好的一个小账户只有一点安慰奖(别笑,差不多一个月工资了…………)。平均下来 每个账户只有5-7%的平均收益,可以看到最近的行情真的不是很好赚钱。
做数据分析和建模的过程中很多时候,我们最害怕和担心的就是为了优化模型,会不自觉引入一些过于复杂的条件拟合
更新时间:2022-09-18 14:10
更新时间:2022-08-31 08:06
机器学习系列报告
本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主
监督学习模型之回归类模型及其应用
与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系
更新时间:2022-08-31 01:52
机器学习容易给人“黑箱模型”和“过拟合”的印象,但事实上一些机器学习算法的逻辑和结果都非常直白,而且算法自身带有一套避免过拟合的参数估计机制。众多的实践研究说明,机器学习方法的预测能力大部分情况下都强于线性模型,很值得在量化投资中测试使用。本报告主要讲述机器学习的基本原理和用其来做量化选股的实证结果。
机器学习模型众多,不存在所谓的最强模型,不同的数据,不同的问题适用不同的模型。我们测试了LASSO、SVM、增强型决策树、随机森林等几种常见机器学习方法,最终选择用随机森林,主要是因为它结构简单、参数少、过拟合概率低,同时还具有非常强的样本外预测能力。机器选股模型省
更新时间:2022-08-30 02:27
\
更新时间:2022-08-25 02:16
作者:woshisilvio
相比同样的决策树模型还有线性分类模型,deepAlpha无疑具有更大的可扩展空间。 一般的机器学习模型 一旦出现训练数据量过大,又或者面对一些极值数据样本和极端数据差异过大的情况,模型容易陷入过拟合的状态。 模型比较依赖训练的因子特征,如果因子选择不好,会导致模型学习效果不佳,而且在后期难以通过参数去调整学习的效果。
StockRanker绩效:98个因子
![{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}
更新时间:2022-08-17 00:16
涉及国内主要品种的不同的频率的回测与交易
\
更新时间:2022-07-31 01:58