机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

BigQuant复现研报


\

更新时间:2023-06-13 06:50

基于深度学习理念的高频交易策略-国泰君安-20200319

本报告导读:机器学习寻找的是适宜交易异象的稳定周期频率,并不是寻找特定参数组下的高收益曲线(即参数过拟合)。

摘要

目前获取战胜基准指数的主要途径是从多因子模型角度来考虑的,其本质上都是通过股票间的横向比较来获取超额收益,这也是我们提出T0系列策略的初衷,希望将==个股择时与多因子模型结合==起来,给投资者带来更多思路。

深度学习在图像处理领域更加成熟,其类似于一种图像降维技术,通过提取图像中的特征值对类似图像进行匹配。本文通过深度学习的方法对参数组及胜率的多维空间进行降维,并对其分布形态进行评估,从而确定模型泛化能力。

自2015年5月至2019年5月,相对上证50指数(股票采

更新时间:2023-06-01 14:28

学界纵横系列:基于机器学习的日内波动率预测

摘要

历史背景

长时间来,学界及业界开发了包括日内估计、GARCH、连续时间模型等近200-300种描述及预测波动率的模型。从交易信号到算法策略,这些模型为许多量化组合提供了极为重要的参考。

预测波动率的重要性

波动率模型为建立交易信号、算法策略、量化组合的分配都提供了重要参考。

波动率预测的难点

对于金融市场上不同类的资产,仅仅一类模型将很难给出一个有效的预测。我们需要对不同的资产标的针对性地使用不同种类的波动率模型来得到可靠的结果。

人工选择合适的模型是一个非常复杂且低效的方法。通过监督性学习算法,我们可以自动化这一过程。同时,通过对一些指标的监

更新时间:2023-06-01 14:28

中高频交易策略再出发:机器学习T0-安信证券-20191230

摘要

中高频机器学习再出发

区别于传统的主观规则交易,机器学习模型可以挖掘出更多的非线性模式。我们设计的集合分类回归策略采用XGBoost机器学习模型,并使用集合学习对机器学习模型进行融合来预测日内涨幅。

日内涨幅影响因子

我们共挖掘出15个因子:隔夜涨幅,集合竞价阶段第一阶段涨幅,集合竞价阶段成交金额占比,第一阶段委比变化,第二阶段委比变化,第二阶段涨停和第二阶段持续上行与日内涨幅有正向影响;集合竞价阶段第二阶段涨幅,集合竞价阶段成交金额占当天总成交金额的比例,第一阶段涨停,第二阶段的委买一价,委卖一价均值的平均值,第二阶段的委买一价,委卖一价均值的最大值,第二

更新时间:2023-06-01 14:28

机器学习高频交易-安信证券-20180223

摘要

从高频到低频

机器学习在高频量化策略上应用更加容易

从线性到非线性

机器学习下的非线性比线性更能榨取数据的价值,但也更容易过度拟合,因此需要合理使用

从单次分析到推进分析

推进分析更加符合实盘状态下盘后更新模型的实际情况

从分类到回归

回归经常能优于简单的分成两类

预测值相关

好的预测值不一定带来好的交易信号

正文

[/wiki/static/upload/92/925cb7dc-1b8c-46db-aed5-54ccb355b557.pdf](/wiki/static/upload/92/925cb7dc-1b

更新时间:2023-06-01 14:28

基于雪球网负面情绪比因子的择时研究 兴业证券-20180409

摘要

作为“猎金系列二十一”,我们研究雪球网负面情绪指标在择时方面的效用。研究的时间窗为2014年1月至2018年2月底,期间雪球网共计有万左右的帖子,涵盖425万用户的行为。通过机器学习的方式对帖子进行情绪判断,进一步构建周度情绪择时因子,并用该因子对主流指数进行择时,效果显著。构建相应指数的周度负面情绪比因子,观察当前负面情绪比因子与过去一年历史三分位数的位置关系,如果当前负面情绪比因子下穿历史上三分位点或者下三分位点(分别对应两种策略),那么满仓操作,否则空仓操作。

对上证50指数、中证100指数、沪深300指数、中证500指数、中证800指数、国证1000指数分别进行择时,时

更新时间:2023-06-01 14:28

用机器学习解释市值:特异市值因子-东方证券-20170804

研究结论

在某个时点上的股票的横截面市值基本上都可以被公司的财务指标和市场因素所解释,也就是说市值解释模型依据了市场上股票的情况,给出了每个公司当期投资者认为的内生市场价值,而解释模型的残差部分,也就是当前市值和内生市值的差,代表了不可解释的部分。残差值越大,代表公司当前的市值向上偏离内生市值越多,那么公司的市值越倾向于回复到其内生市值,也就是说公司股价下跌的可能性越大,反之亦然,特异市值(残差值)是一个相对估值指标,因子值较小的股票在未来表现更好。

我们用线性模型构建了特异市值指标,发现虽然因子表现较好,但是增量信息不明显,究其原因是因为线性的方法没有办法解释市值与财务指标

更新时间:2023-06-01 14:28

基于直观逻辑和机器学习的高频数据低频化应用-海通证券-20200424

摘要

在系列前期报告中,我们从不同角度探寻了分钟成交数据、TICK盘口委托数据以及逐笔数据中所包含的选股能力。研究结果表明,高频数据中包含着较为显著的选股能力。即使在剔除了常规低频因子的影响后,高频因子依旧具有显著的选股能力。考虑到系列前期报告在研究构建高频因子时,大多仅使用某一类高频数据进行因子构建,并未将相关数据搭配使用。本文从逻辑以及机器学习两个角度出发,尝试将不同类别的高频数据混合使用并构建低频选股因子。

买入意愿与主动买入的结合。总结前期研究成果可知,委托挂单数据中包含了投资者还未释放的交易意愿,而逐笔成交数据中包含了投资者已进行的交易行为。两者的结合能够更加全面地刻画投资

更新时间:2023-06-01 14:28

机器学习多因子动态调仓策略 广发证券_20180426_

摘要

传统因子表现不佳,因子择时大显身手

在历史上表现良好的规模、反转和流动性因子在17年以来都出现了明显的回撤,导致主流多因子选股策略表现欠佳。在这样的大背景下,如何把握Alpha因子的风格轮动,选择最有效的风格因子,成为重要的研究课题。

基于机器学习的因子择时框架

本报告选择常见的7个风格因子,通过机器学习方法,基于历史数据提炼因子风格轮动的规律,将因子IC历史信息、宏观经济变量、市场变量等信息作为特征,采用性能优良的XGBoost模型对因子未来的IC进行预测,来衡量不同风格因子未来选股的有效性。在因子配权时,赋予预期表现好的因子更高的权重,而减小预期表现不佳

更新时间:2023-06-01 14:28

以TMLE为例介绍机器学习下的因果性分析-安信证券-20180309

摘要

从IC、IR到另类线性归因

基于IC、IR的单因子分析是传统多因子分析的基石。但是IC、IR分析出却不能考虑到多因子模型中因子与因子之间的相互影响。因此我们以之前报告介绍的标准神经网络回归为例,用另类线性归因对因子进行了分析

从线性归因到非线性归因

所有线性归因都是基于因子单调性(线性)的强假设。但是在机器学习的非线性世界中,这个强假设不复存在。非线性的机器学习算法需要非线性的归因方式

从相关性到因果性

所有的传统归因方式都是基于相关性的而非因果性。因果分析也是机器学习未来的一个重点。我们以TMLE为例介绍机器学习下的因果

更新时间:2023-06-01 14:28

机器学习策略止损无效0

问题

我有一个深度学习策略,我在主函数中添加了跟踪止损的逻辑没有什么用。因为某只股票达到止损条件会卖出,但是第二天机器学习策略根据算法又会将这只股票买入。所以止损策略不能发挥作用啊。请问各位高手有无办法解决?

更新时间:2023-06-01 02:13

ZScoreNorm标准化后输出全为空值?

问题

问题描述

ZScoreNorm标准化后输出全为空值?

问题策略

https://bigquant.com/experimentshare/e91b4eed4f534753a3692800f33a4737

\

更新时间:2023-06-01 02:13

如何做分钟周期的标注

问题

如何做分钟周期的标注

解答

在Meetup10月15日有讲分钟数据标注的,你看一下:BigQuant AI量化专家Meetup(更新至12月03日) 4

https://bigquant.com/experimentshare/58f8eb3f17fe4114bcd49557ceb1902a

\

更新时间:2023-06-01 02:13

AI量化策略中如何选择合适的因子

问题

AI量化策略中如何选择合适的因子

视频

https://www.bilibili.com/video/BV1J24y1f7mJ/?spm_id_from=333.999.0.0

PPT

{{membership}}

[/wiki/static/upload/42/4267409e-a9f4-42db-bb79-1321ba5e4c59.pdf](/wiki/static/upload/42/4267409e-a9f4

更新时间:2023-05-06 07:23

机器学习应用于底部反转策略的表现

作者简介

作者:shen1

简介:鼠、虎、主升浪等三个系列策略作者,已实现1+量化策略实盘

策略简介

今年8月份,市场整体行情较差,沪指跌了1.77%,深证指数跌了4.82%,创业板指跌了3.75%,虽然沪指跌幅较低,但市场上的个股跌幅较大。于是提出猜想:是否能找到比较抗跌的策略,使其在市场下行的时候,回撤较小?

策略的特点:在大盘下跌时,策略相对大盘比较抗跌,策略回撤相对小。

构建步骤

确定策略目标市场

策略的目标市场:中小板(波动率高,活跃度高,流动率高,做出alpha可能性高;且在反转时,上涨的幅度较大)

构建策略核心因子

2个技术指

更新时间:2023-05-06 07:08

机器学习在量化领域中的应用优势

随着交易数据量越来越大,金融领域的各种应用已经验证了使用人工智能可以更好地进行投资或业务决策,也越来越多人相信人工智能技术在金融领域的应用前景。人工智能提供了一种适用于从个人数据到业务流程的高效数据分析工具。 与此同时,越来越多金融机构开始使用机器学习方法,以期在市场竞争中赢得优势。量化投资机构逐渐抛弃传统的分析方法,转而使用机器学习算法预测市场走势和选择投资组合。 与传统投资方式相比,量化投资方式具有更高效率及准确性。量化投资是一种基于计算机系统而生成的投资策略选择方法,可以对数学模型进行监理,在实现交易理念活动过程中构建更为完善规范的量化投资评价体系。在对模型进行监理的基础上,再对历史数据

更新时间:2023-05-04 23:27

量化择时


\

更新时间:2023-05-04 15:10

QuantChat-生成旅行建议

  • \

• 点击新建对话,创建一个新对话



{w:100}



• 点击输入框,开始与QuantChat交流


{w:100}


• 您可以直接输入以下对话


![{w:100}](/wiki/api/attachments.redirect?id=a8f02630

更新时间:2023-05-04 02:27

BigQuant的ChatGPT怎么使用?



\

更新时间:2023-05-04 02:23

ChatGPT

%%BigQuant_ChatGPT

更新时间:2023-05-04 02:21

chatgpt

\

  • %%BigQuant_ChatGPT 你好

\

更新时间:2023-04-28 11:41

CTA程序化交易实务研究:基于机器学习的订单簿高频交易策略-民生-131211

摘要

机器学习是订单簿动态建模的前沿方法订单簿的动态建模,主要有两种方法,一种是经典的计量经济学方法,另一种是前沿的机器学习方法。机器学习通过对己知数据的学习,找到数据内在的相互依赖关系,从而对未知数据进行预测和判断,最终使得机器具有良好的推广能力。支持向量机(SVM,Support Vector Machine)是目前较为先进的机器学习方法。

可以从订单簿提炼指标库来刻画其特征订单簿主要包括买一价、卖一价、买一量、卖一量等基础指标,并可以衍生出深度、斜率、相对价差等指标,其他指标包括持仓量、成交量、基差等,共计17个指标。还可以引入常见的技术分析指标如RSI、KDJ、MA、EMA等

更新时间:2023-04-21 05:13

龙头战法实盘+AI-量化大赛NO.3-中证150增强[策略分享]

  • {w:100}{w:100}{w:100}

{w:100}{w:100}{w:100}

谢谢小Q, 感谢BQ。四周年快乐\~

昨天收到了小Q寄来的礼物,好开心啊,双11不用我自己去买了。。。。一如既往的清新风。我已经猜到了,上一年是保温杯,今年是茶壶,下一年可不可以送包枸杞 ,

更新时间:2023-03-07 12:00

chatgpt

编写线段树代码

更新时间:2023-02-10 06:37

BigQuant_ChatGPT

你好

更新时间:2023-02-10 06:37

分页第1页第2页第3页第4页第5页第14页
{link}