人工智能系列之十二:人工智能选股之特征选择 华泰证券_20180725_
由small_q创建,最终由small_q 被浏览 32 用户
摘要
特征选择是人工智能选股策略的重要步骤,能够提升基学习器的预测效果特征选择是机器学习数据预处理环节的重要步骤,核心思想是从全体特征中选择一组优质的子集作为输入训练集,从而提升模型的学习和预测效果。 我们将特征选择方法应用于多因子选股,发现特征选择对逻辑回归_6m、基学习器的预测效果有一定提升。我们以全A股为股票池,以沪深300和中证500为基准,构建行业中性和市值中性的选股策略。基于F值和互信息的方法对于逻辑回归_6m、XGBoost_6m、基学习器的回测表现具有明显的提升效果。 随着入选特征数的增加,模型预测效果先上升后下降特征个数并非越多越好。以逻辑回归_6m和XGBoost_6m为基学习器时,随着入选特征数的增加,模型的AUC先上升后下降;对于我们的70个特征而言,入选特征数在50左右效果最好。以XGBoost_72m为基学习器时,随着入选特征数的增加,模型的AUC先上升后持平。以基于F值+FPR方法对逻辑回归_6m进行特征选择为例,统计入选特征的频次,发现入选频次高的特征以价量类因子为主。 特征选择是预处理的重要步骤,意义在于减少时间开销,并避免过拟合特征选择是特征预处理的重要环节之一,其意义在于:1)减少时间开销;2)避免过拟合;3)使模型容易被解释。特征选择方法主要包括过滤式、包裹式、嵌入式三类,最常用的方法为过滤式。“过滤”的标准可以来自于无监督学习,如特征本身的方差、熵等;可以是围绕特征和标签构建的统计指标,如F值、互信息、卡方等;也可以由其它模型提供,如L1正则化线性模型的回归系数、树模型的特征重要性等。 面对海量因子时特征选择方法能够大幅提升模型的开发效率特征选择本质上是一种降维手段,没有引入新的信息,因此难以给基学习器的效果带来质的改变。特征选择的优势在于,当我们面对海量的原始特征,仅靠人力无法逐一筛选时,该方法将大幅提升机器学习模型的开发效率。实际上,由于本文使用的70个原始特征均为经单因子测试确证有效的因子,所以特征选择方法更多地是起到锦上添花的作用,如果原始特征包含部分无效的因子,那么特征选择方法可能会对选股策略效果带来更明显的改善。 风险提示:特征选择方法高度依赖基学习器的表现。该方法是对历史投资规律的挖掘,若未来市场投资环境发生变化导致基学习器失效,则该方法存在失效的可能。特征选择方法加大了模型复杂度,也存在一些过拟合风险。
正文
/wiki/static/upload/12/129302b9-e051-43ba-8e58-3edaf2dd25ec.pdf
\