AI+涨停板特征提取
策略简介
本策略是一个基本的StockRanker策略,使用的因子除了一些基本的量价指标、技术指标、财务指标之外,我们加入了涨跌停的因子,由于涨跌停price_limit_status这个字段的含义是等于1表示跌停、等于2表示非涨跌停、等于3表示涨停,因此我们将过去10日的涨跌停状态相加的话
由small_q创建,最终由bq7vztle更新于
本策略是一个基本的StockRanker策略,使用的因子除了一些基本的量价指标、技术指标、财务指标之外,我们加入了涨跌停的因子,由于涨跌停price_limit_status这个字段的含义是等于1表示跌停、等于2表示非涨跌停、等于3表示涨停,因此我们将过去10日的涨跌停状态相加的话
由small_q创建,最终由bq7vztle更新于
夏普比率(Sharpe Ratio)是衡量投资表现的一个指标,它通过比较投资的超额回报与其承担的风险来评估投资的性价比。由诺贝尔奖获得者威廉·夏普提出,是风险调整后的回报的一种度量。
通过BigQuant量化平台的[金融市场数据因子](https:
由bqw9z8tc创建,最终由small_q更新于
在上一篇文章中,大家对新建一个AI可视化模板策略有了初步的认识,但看到策略中众多的模块与看似复杂的连线心中不免存在疑惑,没关系,本篇文章中,我们就来为大家完整介绍一个AI量化策略的组成结构以及涉及的基本概念,希望可以帮助大家对AI量化策略建立一个全面初步的认识。
由clearyf创建,最终由small_q更新于
来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien
机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,
由ftkj2018创建,最终由small_q更新于
量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。
提起量化投资,就不得不提量化投资的标杆—
由qxiao创建,最终由small_q更新于
由qxiao创建,最终由bqui7n2l更新于
投资策略的类型多种多样,具体选择取决于投资者的投资目标和风险承受能力,下面介绍几种常见的投资策略类型。这些策略各有特点,适用于不同类型的投资者和市场环境。
由bqw9z8tc创建,最终由small_q更新于
协方差矩阵用于计算股票投资组合的标准差,投资组合经理又使用协方差矩阵来量化与特定投资组合相关的风险。在本文中,我们将学习如何为包含 n 个股票的投资组合创建为期“m”天的协方差矩阵。
\
让我们了解投资组合分析
由small_q创建,最终由small_q更新于
ATR即平均真实范围(Average True Range)是
由bqw9z8tc创建,最终由small_q更新于
\
简单来说,统计套利由一组量化驱动的算法交易策略组成。这些策略旨在通过分析价格模式和金融工具之间的价格差异来利用数千种金融工具的相对价格变动。统计套利起源于 1980 年代左右,由摩根士丹利和其他银行主导。统计套利策略,也被称为 StatArb,见证了金融市场的广泛应用。该策
由small_q创建,最终由small_q更新于
量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。
是由ugene Fama和Kenneth French提出的,旨在更好地解释股票回报率的差异。
这个模型在原有的三因子模型基础上增加了两个因子,共包含以下五个因子:
计算公式应用参考:**[Fama-French五因子模型]
由bqw9z8tc创建,最终由small_q更新于
协方差是一个统计学的概念,用于衡量两个随机变量间的总体误差。它反映的是两个变量之间的相互关系以及它们如何一起变动。在金融领域,特别是在投资组合管理和风险管理中,协方差是一个非常重要的概念,因为它帮助投资者理解不同资产之间的价格变动关系,从而更好地分散风险。
是衡量公司股票价格相对于其账面价值的一个指标。这个比率通常用于评估公司股票的价值,尤其是在资产重要的行业(如金融业)中。
BigQuant的[金融市场历史数据因子平台](ht
由bqw9z8tc创建,最终由bqguzpkh更新于
由small_q创建,最终由jxsuper88更新于
在经历了近期中国股市的大幅波动之后,我们深刻理解投资者和量化爱好者可能面临的压力和挑战。然而,请相信,每次市场的波动都携带着成长的种子,为我们深化理解和提升技能提供了绝佳的土壤。参加 BigQuant 量化未来之星选拔计划,不仅是开启量化金融职业之旅的第一步,更是在不确定性中
由outside创建,最终由jxsuper88更新于
由small_q创建,最终由bqzkntgq更新于
AI量化领域结合了人工智能(AI)、机器学习(ML)以及量化金融的技术和方法。这一领域的目标是使用算法和计算模型来分析大量金融数据,从而做出投资决策或提高交易效率。
一些在AI量化领域重要技术和方法,以及在金融领域的应用:
由bqw9z8tc创建,最终由bqq78hay更新于
通过上次在Cifar10上复现ResNet的结果,我们得到了上表,最后一栏是论文中的结果,可以看到已经最好
由ypyu创建,最终由bqirn5b7更新于
[https://bigquant.com
由jliang创建,最终由jliang更新于
#102
def func(a):
'''
a: 输入数组,已经排好序
返回值:出现次数最多的元素,如果有多个,输出最早出现的
'''
#如果数组为空,返回None
if not a:
return None
#如果数组不为空,定义相关属性
max_eleme
由bq746cbk创建,最终由bq746cbk更新于
这篇文章的主要目的是介绍有效前沿这个理论工具和分析框架。我们由均值方差分析展开,逐步推演到有效前沿。然后,我们又说到有效前沿在投资或者量化中的应用场景,最后我们也总结了有效前沿的一些问题,尤其是敏感性问题。在教程中,特意加入了一些实验代码,可以让大家在阅读的过程中有更好的理解。
由ypyu创建,最终由qxiao更新于