初级工程师面试题目
面试题目说明
- 要求
- 尽可能低的时间复杂度和空间复杂度
- 代码逻辑清晰,变量命名合理,代码风格规范
 
- 点击如下题目的克隆策略按钮
- 完成代码
- 创建策略分享链接(策略开发界面右上角),发给面试官:分享策略 > 复制 分享链接
[https://bigquant.com
由jliang创建,最终由jliang更新于
[https://bigquant.com
由jliang创建,最终由jliang更新于
#102
def func(a): 
''' 
a: 输入数组,已经排好序 
返回值:出现次数最多的元素,如果有多个,输出最早出现的 
''' 
#如果数组为空,返回None 
if not a: 
    return None 
#如果数组不为空,定义相关属性 
max_eleme由bq746cbk创建,最终由bq746cbk更新于
这篇文章的主要目的是介绍有效前沿这个理论工具和分析框架。我们由均值方差分析展开,逐步推演到有效前沿。然后,我们又说到有效前沿在投资或者量化中的应用场景,最后我们也总结了有效前沿的一些问题,尤其是敏感性问题。在教程中,特意加入了一些实验代码,可以让大家在阅读的过程中有更好的理解。
由ypyu创建,最终由qxiao更新于
BigQuant平台会不断封装机器学习算法策略,方便用户直接使用策略生成器开发策略,降低策略开发难度。本文对BigQuant平台上策略生成器已经支持的机器学习模型进行简单介绍。
目前,BigQuant策略研究平台支持的机器学习模型有分类模型、回归模型、排序模型和聚类模型四
由clearyf创建,最终由bqxqzfmk更新于
考夫曼自适应均线指标的用法具体就是:当股价一直都在线下运行时,突然有一根阳线上穿指标线,这个时候就是一个比较好的进场点,如下图所示。
。这
由ypyu创建,最终由qxiao更新于
ATR又称 Average true range平均真实波动范围,简称ATR指标,是由J.Welles Wilder 发明的,ATR指标主要是用来衡量市场波动的强烈度,即为了显示市场变化率的指标。
首先提出的,这一指标主要用来衡量价格的波动。因此,这一技术指标并不能直接反映价
由small_q创建,最终由qxiao更新于
布林带是一种技术指标,用于以更好的方式分析市场并帮助我们对资产价格做出更好的假设,即资产是否超买或超卖。布林带之于交易就像莎士比亚之于文学,如果你想在交易世界中留下印记,这非常重要而且很难避免。
布林
由qxiao创建,最终由qxiao更新于
1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或
由ypyu创建,最终由qxiao更新于
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
下列代码在读取数据时,使用最新dai.query接口即可。
[数据读取](https://bigquant.com/wiki/doc/dai
由clearyf创建,最终由qxiao更新于
近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。
有这么一句话在业界广泛流传: *
由clearyf创建,最终由small_q更新于
在m2输入特征内修改
由bq5bun29创建,最终由small_q更新于
新版数据导入部分使用dai库
本节主要讲解Pandas库中 DataFrame 的数据查看与选择
Pandas 是基于 Numpy 构建的,让以 Numpy 为中心的应用变得更加简单。平台获取的数据主要是以 Pandas 中DataFrame 的形式。除此之外,
由qxiao创建,最终由qxiao更新于
SELECT date, open, high, low, close
FROM bar1d_CN_STOCK_A
WHERE instrument = '000005.SZA'
AND date BETWEEN '2017-01-06' AND '2017-02-10'
ORDER BY
由xiaoshao创建,最终由qxiao更新于
学习量化也有一段时间了,BigQuant平台与知乎可以说是我的主要学习战场了,一直在跟着BigQuant学院那个《AI量化训练营》学习,再从从知乎中寻找优秀文章进行补充,最终在平台进行实践,我觉的这样效率很高,我整理了知乎量化交易话题,及程序化交易、宽客、多因子模型等子话题中的精华帖,筛选了高赞的文
由qxiao创建,最终由qxiao更新于
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策 。(注:*
由iquant创建,最终由qxiao更新于
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervise
由iquant创建,最终由qxiao更新于
AI量化指标的选择和排序取决于特定的投资策略、市场条件和数据可用性。
以下是30个常见的AI量化指标,按照一般在量化分析中的重要性排序:
由bqw9z8tc创建,最终由qxiao更新于