初级工程师面试题目

面试题目说明

  • 要求
    • 尽可能低的时间复杂度和空间复杂度
    • 代码逻辑清晰,变量命名合理,代码风格规范
  • 点击如下题目的克隆策略按钮
  • 完成代码
  • 创建策略分享链接(策略开发界面右上角),发给面试官:分享策略 > 复制 分享链接

[https://bigquant.com

由jliang创建,最终由jliang更新于

笔试

#102

def func(a): 
''' 
a: 输入数组,已经排好序 
返回值:出现次数最多的元素,如果有多个,输出最早出现的 
''' 

#如果数组为空,返回None 
if not a: 
    return None 
#如果数组不为空,定义相关属性 
max_eleme

由bq746cbk创建,最终由bq746cbk更新于

从均值方差到有效前沿(文字版)

这篇文章的主要目的是介绍有效前沿这个理论工具和分析框架。我们由均值方差分析展开,逐步推演到有效前沿。然后,我们又说到有效前沿在投资或者量化中的应用场景,最后我们也总结了有效前沿的一些问题,尤其是敏感性问题。在教程中,特意加入了一些实验代码,可以让大家在阅读的过程中有更好的理解。

有效前沿

由ypyu创建,最终由qxiao更新于

平台常用AI机器学习模型

导语

BigQuant平台会不断封装机器学习算法策略,方便用户直接使用策略生成器开发策略,降低策略开发难度。本文对BigQuant平台上策略生成器已经支持的机器学习模型进行简单介绍。


目前,BigQuant策略研究平台支持的机器学习模型有分类模型、回归模型、排序模型和聚类模型四

由clearyf创建,最终由bqxqzfmk更新于

考夫曼自适应均线

指标用法

考夫曼自适应均线指标的用法具体就是:当股价一直都在线下运行时,突然有一根阳线上穿指标线,这个时候就是一个比较好的进场点,如下图所示。

![{w:100}](/wiki/api/attachments.redirect?id=c9750cee-d1fd-40c8-9f33-3b7

由small_q创建,最终由qxiao更新于

高阶技巧-如何计算过去N日指标1最大值当天指标2的值

简介

以计算过去20日最高价当天的成交量为例,介绍如何计算这种场景的需求。

主要函数介绍

m_imax()

这里我们将使用到DAI的SQL函数m_imax,该函数可以帮助我们获得过去某个时间段的最大值的窗口索引。

![](/wiki/api/attachments

由iquant创建,最终由iquant更新于

峰度和偏度

导语

本文介绍了峰度和偏度以及如何运用这两个统计指标进行数据的正态性检验。

[https://bigquant.com/codeshare/00af3416-796d-43b9-9726-489d436a98ee](https://bigquant.com/codeshare/00a

由clearyf创建,最终由qxiao更新于

风险平价组合理论与实践

导语

本文介绍了风险平价组合的理论与实践;后续文章将对risk parity组合进行更深入探讨以及引入预期收益后的资产配置实战策略。

前言

  • 资产配置是个很广泛的话题,在投资中是一个非常重要的话题
  • 从使用场景分类上来看,资产配置可以是宏观的资产配置,比如货币类、债券类、权益类

由clearyf创建,最终由qxiao更新于

ATR指标

什么是ATR

ATR又称 Average true range平均真实波动范围,简称ATR指标,是由J.Welles Wilder 发明的,ATR指标主要是用来衡量市场波动的强烈度,即为了显示市场变化率的指标。

首先提出的,这一指标主要用来衡量价格的波动。因此,这一技术指标并不能直接反映价

由small_q创建,最终由qxiao更新于

布林带指标用法和技巧

布林带是一种技术指标,用于以更好的方式分析市场并帮助我们对资产价格做出更好的假设,即资产是否超买或超卖。布林带之于交易就像莎士比亚之于文学,如果你想在交易世界中留下印记,这非常重要而且很难避免。

布林

由qxiao创建,最终由qxiao更新于

量化投资

导语

1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或

由ypyu创建,最终由qxiao更新于

因子(特征)工程是什么

导语

近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。


特征工程是什么?

有这么一句话在业界广泛流传: *

由clearyf创建,最终由small_q更新于

获取港股日线行情数据

根据模版构建可视化线性策略

1.首先选取需要的线性策略组成部分:

2.修改特征

在m2输入特征内修改

由bq5bun29创建,最终由small_q更新于

Pandas查看和选择

新版数据导入部分使用dai库

导语

本节主要讲解Pandas库中 DataFrame 的数据查看与选择


Pandas 是基于 Numpy 构建的,让以 Numpy 为中心的应用变得更加简单。平台获取的数据主要是以 Pandas 中DataFrame 的形式。除此之外,

由qxiao创建,最终由qxiao更新于

10分钟学会Pandas

SELECT date, open, high, low, close

FROM bar1d_CN_STOCK_A

WHERE instrument = '000005.SZA'

AND date BETWEEN '2017-01-06' AND '2017-02-10'

ORDER BY

由xiaoshao创建,最终由qxiao更新于

知乎量化交易及其子话题高赞精华帖整理

学习量化也有一段时间了,BigQuant平台与知乎可以说是我的主要学习战场了,一直在跟着BigQuant学院那个《AI量化训练营》学习,再从从知乎中寻找优秀文章进行补充,最终在平台进行实践,我觉的这样效率很高,我整理了知乎量化交易话题,及程序化交易、宽客、多因子模型等子话题中的精华帖,筛选了高赞的文

由qxiao创建,最终由qxiao更新于

量化交易是什么?  快速入门版

什么是量化交易?

度娘官方版 — 理论这么说

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策 。(注:*

由iquant创建,最终由qxiao更新于

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervise

由iquant创建,最终由qxiao更新于

AI量化交易指标

AI量化指标的选择和排序取决于特定的投资策略、市场条件和数据可用性。

以下是30个常见的AI量化指标,按照一般在量化分析中的重要性排序:

  1. [收益率](https://bigquant.com/wiki/doc/5bm05yyw5ps255uk546h6k6h566x5yws5byp5y

由bqw9z8tc创建,最终由qxiao更新于

分页:第1页第2页第3页第4页第5页第6页第15页
{link}