研报&论文

跟着李沐学AI—Transformer论文精读 【含研报及视频】

由qxiao创建,最终由qxiao 被浏览 80 用户

原研报标题:Transformer: Attention is all you need

发布时间:2017年

作者:Ashish Vaswani、 Noam Shazeer、 Niki Parma 、Jakob Uszkoreit、 Llion Jones 、Aidan N. Gomez、 Łukasz Kaiser

{w:100}{w:100}摘要

主流的序列转换模型都是基于复杂的循环神经网络或卷积神经网络,且都包含一个encoder和一个decoder。表现最好的模型还通过attention机制把encoder和decoder联接起来。我们提出了一个新的、简单的网络架构,Transformer. 它只基于单独的attention机制,完全避免使用循环和卷积。在两个翻译任务上表明,我们的模型在质量上更好,同时具有更高的并行性,且训练所需要的时间更少。我们的模型在 WMT2014 英语-德语的翻译任务上取得了28.4的BLEU评分。在现有的表现最好模型的基础上,包括整合模型,提高了2个BLEU评分。在WMT2014英语-德语的翻译任务上,我们的模型在8个GPU上训练了3.5天(这个时间只是目前文献中记载的最好的模型训练成本的一小部分),创造了单模型的SOTA结果,BLEU分数为41.8,通过在大量和少量训练数据上所做的英语选区分析工作的成功,表明Transformer能很好的适应于其它任务。

简介

RNN,LSTM,GRU,Gated Recurrent Neural Networks 在序列建模和转换任务上,比如语言模型和机器翻译,已经是大家公认的取得SOTA结果的方法。自此,无数的努力继续推动递归语言模型和encoder-decoder体系结构的界限。

归模型通常沿输入和输出序列的符号位置进行因子计算。在计算时将位置与步骤对齐,它们生成一系列隐藏状态h t h_th t ​ ,t tt位置的h t h_th t ​ 使用它的前驱h t − 1 h_{t-1}h t−1 ​ 和当前的输入生成。这种内部的固有顺阻碍了训练样本的并行化,在序列较长时,这个问题变得更加严重,因为内存的限制限制了样本之间的批处理。最近的工作通过因子分解技巧[21]和条件计算[32]在计算效率方面取得了显著的提高,同时也提高了后者的模型性能。然而,顺序计算的基本约束仍然存在。

在各种各样的任务中,注意力机制已经成为各种引人注目的序列模型和转换模型中的不可或缺的组成部分,它允许对依赖关系建模,而不需要考虑它们在输入或输出序列中的距离。然而,在除少数情况外的所有情况下[27],这种注意机制都与一个递归网络结合使用。

在这项工作中,我们提出了Transformer,这是一种避免使用循环的模型架构,完全依赖于注意机制来绘制输入和输出之间的全局依赖关系。Transformer允许更显著的并行化,使用8个P100 gpu只训练了12小时,在翻译质量上就可以达到一个新的SOTA。

研报原文PDF

/wiki/static/upload/d5/d5bd0fb5-d61d-4908-b602-6b5f0a72459f.pdf

视频解读

https://www.bilibili.com/video/BV1pu411o7BE?from=search&seid=16034776276632639657&spm_id_from=333.337.0.0

\

标签

Transformer自然语言处理深度学习机器学习神经网络
{link}